The future of computers….The Quantum Computers..

So what are quantum computers????

quantum computers are the next generation of supercomputers,they are used for computation that makes direct use of distinctively quantum mechanical phenomena, such as superposition and entanglement, to perform operations on data.

Whats the different about them??

The difference between the classical computing and quantum computing.

Classical computing relies, at its ultimate level, on principles expressed by Boolean algebra, operating with a (usually) 7-mode logic gate principle, though it is possible to exist with only three modes (which are AND, NOT, and COPY). Data must be processed in an exclusive binary state at any point in time – that is, either 0 (off / false) or 1 (on / true). These values are binary digits, or bits. The millions of transistors and capacitors at the heart of computers can only be in one state at any point. While the time that the each transistor or capacitor need be either in 0 or 1 before switching states is now measurable in billionths of a second, there is still a limit as to how quickly these devices can be made to switch state. As we progress to smaller and faster circuits, we begin to reach the physical limits of materials and the threshold for classical laws of physics to apply. Beyond this, the quantum world takes over, which opens a potential as great as the challenges that are presented.
The Quantum computer, by contrast, can work with a two-mode logic gate: XOR and a mode we’ll call QO1 (the ability to change 0 into a superposition of 0 and 1, a logic gate which cannot exist in classical computing). In a quantum computer, a number of elemental particles such as electrons or photons can be used (in practice, success has also been achieved with ions), with either their charge or polarization acting as a representation of 0 and/or 1. Each of these particles is known as a quantum bit, or qubit, the nature and behavior of these particles form the basis of quantum computing. The two most relevant aspects of quantum physics are the principles of superposition and entanglement .

Whats are things quantum computer does which your pc doesn’t?

Quantum computers operate on completely different principles to existing computers, which makes them really well suited to solving particular mathematical problems, like finding very large prime numbers. Since prime numbers are so important in cryptography, it’s likely that quantum computers would quickly be able to crack many of the systems that keep our online information secure. Because of these risks, researchers are already trying to develop technology that is resistant to quantum hacking, and on the flipside of that, it’s possible that quantum-based cryptographic systems would be much more secure than their conventional analogues.Researchers are also excited about the prospect of using quantum computers to model complicated chemical reactions, a task that conventional supercomputers aren’t very good at all. In July 2016, Google engineers used a quantum device to simulate a hydrogen molecule for the first time, and since them IBM has managed to model the behaviour of even more complex molecules. Eventually, researchers hope they’ll be able to use quantum simulations to design entirely new molecules for use in medicine. But the holy grail for quantum chemists is to be able to model the Haber-Bosch process – a way of artificially producing ammonia that is still relatively inefficient. Researchers are hoping that if they can use quantum mechanics to work out what’s going on inside that reaction, they could discover new ways to make the process much more efficient.

Leave a comment